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Thermodynamic Theory of 
Equilibrium Copolymerization 

ITARU MITA 

Institute of Space and Aeronautical Science 
6-1, Komaba-4, Meguro-ku, Tokyo, Japan 

A B S T R A C T  

General equations are derived for the thermodynamics of 
equilibrium copolymerization based on the diad model of co- 
polymer. Physical interactions between components in solution 
are taken into consideration. Several special cases are treated 
in detail. When these physical interactions are absent, the 
relations obtained from the theory agree completely with those 
derived from the kinetics. Equilibrium monomer concentrations 
a r e  illustrated as functions of excess free energy due to forma- 
tion of heterodiad, equilibrium constants of homopolymerization, 
and initial monomer concentrations. It is shown that when the 
physical interactions are present, their effects cannot be ignored 
even in dilute solution. In bulk copolymerization, the physical 
interactions have a considerable effect on equilibrium, especially 
when the equilibrium monomer volume fractions a re  relatively 
small. 

I N T R O D U C T I O N  

Izu and 0' Driscoll [ 11 have recently formulated a theory of equilib- 
rium copolymerization from a kinetical point of view based on the diad 
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1274 MITA 

model. In the case of equilibrium homopolymerization, it is known 
that the thermodynamic treatment, which considers the interactions 
between components in solution, is more general than the kinetic 
treatment, and is a good explanation of the dependence of equilibrium 
monomer concentration on polymer concentration, initial monomer 
concentration, o r  solvent used [ 2-51. Consequently, it is desirable 
to establish a thermodynamic theory of equilibrium copolymerization 
and compare it with that given by the above authors. 

There exist several  thermodynamic theories of equilibrium co- 
polymerization, among which Sawada's [ 61 and Thei l ls  [ 71 t reat  only 
the standard changes of thermodynamic functions and cannot be 
applied directly to the real  equilibrium system. A more recent 
theory of Harvey and Leonard [ 81 gives a general relation of equilib- 
rium in solution, and the bulk equilibrium copolymerization is treated 
in detail as a special case. But as will be shown later, their  theory 
does not seem adequate and its extension to the ideal solution, i.e., 
the case in which no interactions exist between components, fails to  
agree with the equations derived by Izu and 0' Driscoll. 

In the present work we will present another thermodynamic 
theory of equilibrium copolymerization, the start ing point of which is 
different from that of Harvey and Leonard. 

G E N E R A L  T R E A T M E N T  

The modified form of the start ing equation of Harvey and Leonard' s 
theory can be expressed as 

where p is the chemical potential, x the mole fraction of a component 
in the copolymer, and the suffixes A, B, and P refer  to Monomer A, 
Monomer B and copolymer, respectively. The equation is analogous 
to the usual relation such as akA + bFB = c p c  for  an equilibrium of 
low molecular weight compounds given by aA + bB == cC. However, 
while the low molecular weight Compound C has a definite composition, 
the composition of a copolymer is considered as a variable which is 
affected by the equilibrium. In other words, Monomer A or B can go 
freely and independently into the copolymer or  vice versa  in  the 
equilibrium copolymerization. Consequently, the partition of A and B 
in the monomer state and polymer state is the quantity to be governed 
by thermodynamics. The situation is similar to the equilibrium 
between two phases consisting of two components. Consequently, our 
start ing point for equilibrium copolymerization is to  equate the 
chemical potential of each component in the two states, i.e., 
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EQUILIBRIUM COPOLYMERIZATION 127 5 

The suffixes a and P are  used intentionally to denote the monomer 
units A and B in the copolymer. 

The chemical potential of each component is obtained, as is well 
known, by the partial differentiation of the overall free energy of the 
equilibrated system. The latter is given for a system consisting of 
Monomer A, Monomer B, copolymer, and solvent(suffix: s )  as 

where Go denotes the standard free energy, AGm the free energy of 
mixing of the components, and n the moles (or  base moles) of each 
component. The chemical potentials of monomers are given simply 
as 

pA = GAo + ApA (similar equation for B) (4 )  

For the chemical potentials of monomer units in the copolymer, we 
have to know the free energy of 1 base mole of the amorphous co- 
polymer GPO. According to the diad model, any copolymer can be 
specified by two properly selected parameters. In the following we 
use x (= 1 - x ), the mole fraction of unit a in the copolymer and J/,  

+ PBc, where the distribution parameter which is given by Ic/ = P 

) is the conditional probability of finding unit 8 (or a)  
succeeding unit a (or  8). Theil [ 71 has calculated the free energy 
difference between 1 base mole of copolymer specified by xa and J/ 

and a mixture of homopolymers with the same composition. Rewriting 
his result by our notation, we obtain 

Ly P 

(or P 
U P  

pas Pa 

+ xa In( 1 - ha) + x P  In( 1 - +x,)} ( 5) 

Here, Gaao (or  GBBo) is the standard free energy associated with the 
diad aa (or &3) or it represents the free energy of 1 base mole of 
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1276 MITA 

amorphous poly-cy (or poly-P), and r is the standard free energy 
difference between hetero- and homodiads, i.e., 

r = G  cyp ' + Gwo - GQQ' - GpBo (6) 

This quantity is also regarded as a difference between the free energy 
changes of c ross  polymerizations and those of homppolymerizations: 

r = AG o + - A G ~ O  - A G ~ ~ ~  QP 

= (AHcyp' + AHpA' - AHCYA' -  AH^^^ ) - T (  + bsm0 

- ASolA' - Asm') (7)  

The suffix CYB means that the Monomer B adds to the terminal unit a in 
the copolymerization to form a d i d  ap, and AG 
energy change associated with this polymerization, and so on. Equation 

A G ~ A "  - AGpBn. When r is negative, copolymerization is easier  than 
homopolymerization. 

The first term of the right-hand side of Eq. (5) arises from the 
formation of hetrodiads and the second term from the entropy of dis- 
tribution of two monomer units in the copolymer. The entropy of 
distribution is calculated according to  Mandelkern' s formula [ 91 and 
differs from those obtained by Sawada [ 61 and Leonard [ 81 on a less 
rigorous basis. 

In dynamic equilibrium the monomer units in the copolymer are 
distributed to attain the most stable structure. Consequently, + is not 
arbi t rary but will have a value to  minimize Gpo for  a definite 
composition. As has been done by Theil, the condition aGpo/8+ = 0 
for Eq. (5) leads to  the relation 

' the standard free as 

(7)  is valid because Gago - Gcycyo = A G c y i  - AG,' and Gwo - GpBo = 

and + is calculated as a function of xcy and r/RT by solving the above 
quadratic equation. From Eqs. ( 5 )  and (8), GPO at its minimum value 
is p e n  by 

GPO = x G + xpGppO +RT{Xa ln(1  - ep) + x p  l n ( 1  - +xcy)} (9) 
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EQUILIBRIUM COPOLYMERIZATION 1277 

Let us now calculate the chemical potential of monomer unit in the 
copolymer 

where n, is the moles of unit (Y in the copolymer and is equal to  nPxa. 

The implication of partial differentiation with respect to  n, is that n, 
can be varied while n is kept constant, o r  in other word, a and P be- 
have independently as already mentioned. By the use of Eq. (9) the 
first term of Eq. (10) is calculated as 

P 

a (npGpo) 
= Gaa0 + R T  In( 1 - +x ) P 

an, 

Relations used in this calculation are 

P ax,/ancr = - ax /an, = x P 
and 

The latter is obtained by partial differentiation of Eq. (8) with respect 
to n, followed by elimination of the t e r m  containing Q, again using 

Eq. (8). 
As for AP,, 

a(AGm) anp  a(AGm) a(n ,+np)  
AP,= - = -  -- APp = APp (12)  

an, an, anp  an, 

where App is the excess chemical potential of the copolymer due to 
mixing. Consequently 

P, =Go," + RT ln (1  -Qx P ) + A l p  ( 1 3 4  

and in a similar way 

p P = G P B 0  + R T l n ( l - W , ) +  A P ~  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
5
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1278 MlTA 

Then, using the basic Eqs. (2) for equilibrium, we obtain 
1 

-In( 1 - J/x ) --( AGaAn + A p p  - Ap,) = 2, ( 1 4 4  
- R T  

1 
R T  

-In( 1 -$x,) = -( AGmo + A p p  - ApB)  = ZB ( 14b) 

where AG,' = GaQo - GAn and AGmo - GBo are the standard free 
energy changes of homopolymerization of A and B, and 2, and ZB are 
the simplifying notations for ( AGaAo + A p p  - ApB)/RT and ( AGmo + 
~p~ - A ~ ~ ) / R T ,  respectively. 

On substitution of ha and Qx , obtained from the above equations, 
into Eq. (a) ,  we obtain 

B 

This is the fundamental relation for the equilibrium copolymerization. 
Another important equation which defines the composition of the co- 
polymer is obtained by elimination of (1, from Eqs. ( 14a) and (14b): 

x 1 - x a  1 -  exp(-2,) 

X Q xQ 1 - exp(-ZB) ( 16) s = - =  

Now let us calculate the excess chemical potentials due to  mixing, 
ApA, ApB,  and App. This is done by extending the lattice theory of 
solution by Flory [ 101 to a multicomponent system. The general ex- 
pression obtained is given by 

(17)  
i 

k,l #i 'k 
k > l  

V - 2 Xkl(-)$?Jk$l 

where @Ji and vi are the volume fraction and molar volume of the i-th 
component, respectively, and x is the usual interaction parameter 

i j  
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EQUILIBRIUM COPOLYMERIZATION 1279 

between the i-th and j-th components and has  the relation x.. = 

xi j (v j  /vi). For simplicity we assume that all the molar volumes 
(and base molar volumes) of components are the same and that the 
degree of polymerization of the copolymer is very high. Then we 
obtain 

11 

=-- 
+ Al-cp - APA 

z =- 
RT RT A 

Consequently, Eqs. (15) and ( 16) can be expressed in terms of AGQAo, 
AGmo, @, and xs. 

other parameters is necessary for a complete description of the 
equilibrated system. We chose, as these parameters, @Ao and @,,, 
the initial volume fractions of Monomer A and Monomer B before 
polymerization More generally speaking, @Ao and @Bo are considered 
aa the total volume fractions of the components A + Q and B + P in the 
system, respectively. They do not change during polymerization and it 
does not matter whether a certain amount of copolymer waa present 
before polymerization, provided that the initial copolymer is living 
and can exchange its units freely. The above argument is based on the 
approximation that the volume is additive and all the molar volumes 
are the same. Then the following relations hold: 

Besides the above two equations, another equation containing some 

and 

1 - XQ 'BO - @B 

xQ @A0 - 'A 

- =  
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1280 MITA 

Combination of Eq. (20) with Eq. ( 16) gives 

Thus, in principle, three unknowns, i.e., 
determined from the three Eqs. ( 15), (21) ( ZA and ZB being given by 
Eqs. 18), and (19), provided that all the thermodynamic parameters 
( r /RT,  AGaAo, AGBi, and x) and initial conditions ($Ao and $ ) BO 
axe known. Then the composition of the copolymer is given by 
Eq. (20). 

purpose it is convenient to mention the relation already known for 
equilibrium homopolymerization. This is given by [ 2, 51 

@B, and qjP, can be 

In the following we will discuss some special cases. For this 

(s imilar  equation for  B) (22) 

where the asterisk re fers  to the quantities in the equilibrium homo- 
polymerization. This equation is also obtained by setting ZA = 0 and 
$ = 0 in Eq. (18a). Z = 0 is the consequence of x 0 in Eq. (14a). B A P =  

C A S E  W I T H  NO I N T E R A C T I O N S  

When there is no interaction between components, all the x's axe 
null. Then Eq. (15) with the aide of Eq. (18) becomes 

r 1 AG,AO 1 AGBBO exp(- -) = {- exp(- - 1) - I}{- exp(- - 1)- 1) 
( 23) 

RT @B RT $A R T  

It is more convenient to  use the equilibrium volume fractions in homo- 
polymerization without interactions $A* and $ * instead of AGaAo and 
AGm0. From Eq. (22) they axe given by 

B 
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EQUILIBRIUM COPOLYMERIZATION 

Consequently 

$B * $A * 
@A @B 

and Z =In- B Z =In-  A 

1281 

(25 )  

and 
[BI  * 

- 1) (-- - 1 )  ( 26) 
r @A* 4B * [A1 * 

R T  @A 9, [A1 [BI  
exp(- -) = (- - 1) (- - 1) = (- 

The concentration of A, for example, is given by [A]  = $ /$ ' where 
$A' is the volume fraction of A at 1 mole/liter. The validity of this 
relation and the constancy of $ ' in any solution a r e  based on the 
assumptions of the additivity of the volumes and the equality of the 
molar volumes. Thus, in the approximation used, it is permitted to 
equate the ratio of volume fractions to the ratio of concentrations. 

A A  

A 

In the same way, Eqs. (14) are reduced to 

In the diad model of copolymer, x P  = P /(Pap + PPa) = PUP/$. 

As a result ,  1 - $m - Pcta where Pact is the  conditional probability 
of finding unit Q succeeding unit ct in the copolymer. In the same way, 
1 - J/x = P 

interaction, [A] * = l/KQA and [ B] * = l/KPp, where KctA and KPB a r e  
the equilibrium constants for the homopolymerization of A and B in 
solution, it is obvious that Eqs. (26) and (27) a r e  the same as those 
derived by Izu and 0' Driscoll [ 11 on a kinetic basis. On the  other 
hand, when Leonard's treatment [ 81 is extended in the same way, the 
following relation is obtained: 

QP 
P -  

If we remember that in homopolymerization without PB' 

r $A*+B* $A $13 +A *$  B * (1--)(1--)1 $A $B 
exp(- -) = - (-)( 1 - - - -) [ t ___ 

RT $A $B $A* $B* $A $B $A* $B* 
(28) 
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12 82 MITA 

This resembles somewhat, but differs essentially from, Eq. (26), the 
modified form of which is given in brackets for comparison. 

Equation (21) is also simplified by the use of Eq. (25) to 

'A 

4A* 
1-- 

'BO - 'B 
'B 'AO- 'A 

- =  

1 -- 
'B* 

or, expressed in terms of concentrations, 

[BIO [BI 

[Bl* [Bl* - - (30) 
[A10 PI 

KcvA (- -- ) 
[A1 

[A]* [BIO - [BI 
[BI MI, - [A1 

1-- 

1 K (--- 1 - -  
[BI * PB [A]* [A]* 

The combination of Eqs. (26) and (30) gives the equilibrium monomer 
concentrations [A] and [ B] as functions of the initial monomer con- 
centrations ( [ A] and [ B] o )  and three thermodynamic parameters 
( r /RT,  [A] * = l/KaAJ and [ B] * = 1/K ). 

In order to visualize the results obtained, we will show in the 
following some figures representing the equilibrium monomer con- 
centrations. The normalized concentrations, i.e. , the ratios 
[A] /[ A] * and [ B] /[ B] *, are more convenient quantities than the 
concentrations themselves for representation. It is clear from Eqs. 
(27)  that these ratios do not exceed unity or, in other words, the 
equilibrium concentration of each monomer is always equal or 
smaller than that in the corresponding homopolymerization. The re- 
lation given by Eq. (26) is illustrated in Fig. 1 (dotted lines) with 
various values of exp( - r/RT). It is seen that copolymerization is 
more favored with an increase of exp(- r /RT)  or with a decrease of r 
from positive to negative. Equation (30) shows that the normalized 
equilibrium monomer concentrations are not only functions of the 
ratio of the equilibrium constants of homopolymerization, but are also 
functions of the initial monomer concentrations. The full lines in 
Fig. 1 show the effect of the former on equilibrium for the case where 
the initial concentrations of A and B are kept at the equilibrium values 
in homopolymerization, i.e. , [A] = [A] * and [ B] , = [ B] *. The cross  

PB 
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EQUILIBRIUM COPOLYMERIZATION 1283 

FIG. 1. Dependence of equilibrium monomer concentrations on 
exp( - r / R T )  and KaA/KpB in solution without physical interactions. 
Initial monomer concentrations are taken as [ A] /[ A] * = [ B] /[ B] * = 1. 
Full lines: Curves with constant KaA/Km. Dotted lines: Curves with 
constant exp( -r/RT ). Values of KruA/KPB and exp( -r/RT) are given on 
the curves. 

points of the full lines and the dotted lines determine the equilibrium 
concentrations of A and B for given sets of thermodynamic parameters  
r /RT and KaA/Km in the case of the initial conditions given above. It 
is seen from the figure that when one of the monomer is more suceptible 
to homopolymerization (KaA/K is larger  o r  less  than unity), it PB 
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1284 MITA 

FIG. 2. Dependence of equilibrium monomer concentrations on initial 
monomer concentrations of A in solution without interactions. Initial 
monomer concentrations of B a re  taken as [ B o/ [  B] * = 1. Full lines 
and broken lines: Curves with constant [ A l O h A ]  * for  KaA/K = 4 

and 1/4, respectively. Values of [A] ,/[ A] * a re  given on the  curves. 
Dotted lines: Same as in Fig. 1. 

PB 

copolymerizes more than the other as anticipated, and this unbalanced 
tendency is more pronounced as exp( -r/RT) increases. 

Now let us examine the effect of the initial monomer concentrations 
on the equilibrium. The fu l l  and broken lines in Fig. 2 show the re- 
lation given by Eq. (30) with KaA/KBB equal to 4 and 1/4, respectively, 
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EQUlLIBRIUM COPOLYMERIZATION 1285 

FIG. 3. Dependence of equilibrium monomer concentrations on initial 
monomer concentrations in solution without interactions. KaA/K 
taken as 1/4. Initial monomer concentrations are s o  chosen as to keep 
their  normalized values equal ([  A],/[A]* = [ B],/[ B] *). Full lines: 
Curves with constant initial monomer concentrations. Values of 
normalized initial monomer concentrations are given on the curves. 
Dotted lines: Same as in  Fig. 1. 

is 
PB 

for the case where [ B l 0  is kept equal to [ B] * and [ A], is varied. Some 
of the curves in Fig. 1 for Eq. (26) a r e  reproduced again in Fig. 2 as 
dotted lines. When [ A], increases,  the equilibrium concentration of B 
decreases  gradually and that of A increases. The decrease of [ B] is 
more rapid when KaABBB is smaller  and exp(-r /RT) is larger.  At 
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1286 MITA 

very large value of [A],, [ B] 0 and [A] = [A]*. It must be noted 
that even when [ A] /[ A] * is less  than unity, the equilibrium holds at 
any condition. But as is shown in Fig. 3, this is not the case when the 
initial monomer concentrations are  chosen s o  as to keep the relation 
[A] ,, /[ B] = [A] */[ B] * but the overall concentration is varied. For 
the equilibrium to hold, the equilibrium monomer concentrations must 
be less than the initial monomer concentrations. As a result, the 
curves corresponding to Eq. (30) are  only segments in the region of 
lower initial concentrations and cannot cross some of the curves with 
low values of exp(-r/RT). Further, at very high initial monomer 
concentrations, [A] /[A] * and [ B] /[ B] * reach some limiting values. 
Thus the initial monomer concentrations are important variables in 
equilibrium copolymerization. Only in the very special case of 
I7 = 0 and KaA = KPB can it be shown that the equilibrium monomer 
concentrations are governed only by the composition of the feed as 

and do not depend on the overall initial concentration which, however, 
must be larger than [A]  * (= [ B] *) for the equilibrium to hold. 

CASE OF D I L U T E  S O L U T I O N  

In dilute solution, $s i~ 1 and $A, $B, and $ are very small. Then, 
in Eqs. (18) and (22), all the te rms  containing the latter three except 
the logarithmic terms can be ignored and $s can be put equal to unity. 
Consequently, $,* is, in this case also, a function of temperature only. 
Then Eqs. (18) are transformed with the aide of Eq. (22) to 

P 

+ xsp - X S a  (324 
+A* 

@A 
1 - In $A+ xsp - xAs = ln- z =-- 

%A0 

A RT 

+ xsp-  xsp 
%* 
$B 

Z =In- B 

It follows that if xsp = xsa = xsB, the second and the third terms of 
the above equations disappear and all the argument given already for 
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EQUILIBRIUM COPOLYMERIZATION 1287 

equilibrium without interactions also holds in this case. Even when 
the above conditions are not fulfilled, if $ssp is constant and in- 
dependent of the composition of the copolymer, it is possible to use 
the same equations in the case with no interactions by replacing 9 * A 
by $A* exP(Xgp - Xsq) and $B* by $B* exp(xsp - Xsp). However, 
it is rather likely that the interaction parameter of the copolymer 
with solvent qjsp depends on the composition of the copolymer when 
xsq and xsP differ appreciably. One of the possible variations of xsp 
is the linear change with composition, i.e., xsp = xqxsq + x x 

By solving Eqs. (15) and (16) for ZA and ZB, and introducing them 
into Eqs. (32), we can calculate $A*/$ and $,*/$ as functions of 
r/RT, xq, and three x Is. Then the product { ( $A*/$A) - 1) { ( c # J ~ * / $ ~ )  - 
1 } is calculated too. This product is constant and equal to exp( - r/RT) 
at any polymer composition at a constant temperature i f  the inter- 
actions a re  absent. But this  does not hold when there are interactions 
between solvent and copolymer. Assuming the linear change of xsp 

= 0.5, the ratio of this product mentioned above and taking xsq - 
to  exp( - r/RT) is calculated for the case of exp( - r/RT) equal to  10, 1, 
and 1/10, and these are shown in Fig. 4. It is seen from the figure 
that when exp( - r/RT) is larger than unity or  r is zero or  negative, 
the product is, as a very rough approximation, nearly constant to give 
an approximate value of r/RT. On the other hand, when r /RT is 
positive, the product is f a r  from constant and differs appreciably from 
exp( -r/RT),  especially near the middle of the composition axis. 

solution even for the case of dilute solution in equibrium 
copolymerization. 

P SS' 

A B 

xSP 

The above example shows the importance of the interactions in 

CASE O F  B U L K  C O P O L Y M E R I Z A T I O N  

When 9 is put equal to  zero and $ J ~  is eliminated by the use of the S 
relation $p = 1 - $A - $ Z and Z are expressed as B' A B 
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% 
FIG. 4. Effects of polymer-solvent interactions on equilibrium in 

dilute solution. x S a  - xsp is taken as 0.5 and xsp is assumed to change 
linearly with composition of copolymer. Values of exp( - r /RT) are 
designated by numbers associated with the curves. 

Substitution of the above two equations into Eqs. ( 15) and (21) affords 
two basic equations from which 9 and $B can be calculated as 
functions of six thermodynamic parameters. Of the six parameters, 
three are chemical in nature (I"/RT, GcUAo/RT, GpBo/RT) and the 
other three a re  physical interaction parameters and have a secondary 
effect. The case where the latter are negligible was discussed 
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EQUILIBRIUM COPOLYMERIZATION 1289 

previously. It is noted, however, that there is a restriction on the 
initial conditions in this case, i.e., 

and Figs. 1 through 3 cannot be used because their initial conditions 
are not consistent with Eq. (34). Thus, we will show an example for 
the case with no physical interactions. In bulk copolymerization the 
triangle representation of the composition is convenient as has been 
done by Leonard [ 81. 

Figure 5 shows the equilibrium composition in bulk copolymerization 

FIG. 5. Equilibrium composition in bulk copolymerization without 
physical interactions. Full lines: Curves with constant AGaAa /RT 
and AGpB /RT. Sets of values of exp(-GaA"/RT + 1) and exp( - G p p T  
+ 1) are given in parentheses at the ends of curves. Linear lines, I' = 
0; (a), em( - r /RT)  = 2 for (2,2); (b), exp(-r/RT) = 1/2 for (2,2). 
Dotted lines: Curves with constant initial volume fractions of A( 
Values of #Ao are given by numbers associated with the curves. 
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1290 MlTA 

for the case, without physical interactions. The full lines represent 
Eq. (15) with sets  of constant values of exp(-GolAo/RT + 1) and 
exp(-G "/RT + 1). Here the values of the latter is kept as 2 and 
the sets of the values of two parameters a re  given in parentheses, 
e.g., as (2,2). The dotted lines represent curves with constant 
initial monomer volume fraction $Ao. The cross  points give the 
equilibrium composition as before. When r=  0, the lines with 
constant chemical parameters are linear and the two ends of the 
linear lines at $I - 0 and $ = 0 correspond to the equilibrium A -  B 
values in homopolymerization. Even when 
main unchanged, but the lines are no longer linear. When r < 0, 
copolymerization is favored and the equilibrium shifts upward as is 
shown by Curve a which corresponds to the case with exp(-r/RT) = 
2 for (2,2). When r > 0, the equilibrium shifts downward because 
of the unstability of the copolymer. This is shown by Curve b for 
(2,2) [exp(-r/RT) = 1/21. Similarly concaved curves can be 
drawn around each linear line, and the deviation from the linear 
lines depends on the value of r/RT. We have not shown them in 
detail but the essential feature may be understood by the two ex- 
amples given above. 

xAp, xBP, and xAB are chosen and the composition curves are 

and exp( -AGmo/RT + l), 1 and 2 in one case and 4 and 2 in the other 
case, respectively. They are represented as (1,2) and (4,2) in Fig. 6. 
r is taken as zero. The curves for the cases without interactions are re- 

'BP) produced from Fig. 5. For simplicity we used the case where xAp = 

and they are assumed to  be independent of the composition of the copolymer. 
The change in the equilibrium behavior due to physical interactions 

may be explained conveniently from the change in the chemical potentials. 
From the definition of ZA and ZB (Eqs. 14) and remembering that F~ = 

pF = +, (Eq. 12), Eqs. (33) can be rewritten as 

BB 

# 0 these two points re- 

To examine the effect of physical interactions, several values of 

onstructed for two cases having, as the values of exp( -AGai /RT + l), 
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EQUILIBRIUM COPOLYMERIZATION 1291 

FIG. 6. Effects of physical interactions on equilibrium composition 
in bulk copolymerization. r is taken as 0. The curves with constant 
initial monomer volume fractions are  not represented here. The two 
groups of curves correspond to the cases where exp(-Gdo/RT + 1) 

and exp( -G "/RT + 1) are  taken as (1 and 2) and (4 and 2), BB 
respectively. The interaction parameters are: (a), xp = 0, xAB = 0; 
(b), X p  = 0.2, XAB = 0; ( C ) ,  X p  = 0.4, xAB = 0; (d), xP = 0, xAB = 

0.5; and (e), xp = 0, XAB = -0.5. 

Because we are  treating a special case of x AP - - xBp, a new notation 
x is used. Without physical interactions, In cp and In 9 o r  the 
differences in the excess chemical potential due to mixing have 
certain values governed by three chemical parameters and the initial 
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conditions. When physical interactions are introduced, the equilibrium 
will change according to the values of the last two terms in Eqs. (35). 
If they are positive, the chemical potential of the copolymer becomes 
larger than that of the monomers, and the equilibrium shifts to  the 
side of the monomers by depolymerization. If they are negative, more 
polymer is formed. 

The effect of xp is reversed at $A + $B = 1/2. When xp is positive, 
the volume fraction of the copolymer decreases in the region of $ + A 
4B > 1/2 as in the case of b and c for (1,2) in Fig. 6, and it increases 
in the region of $A + $B < 1/2 as is seen in the case of b and c for 
(4.2). As In $ tends to zero when $A approaches unity, the term 

2xp + $B - 1/2) becomes relatively important and the deviation 
from the curves for no interactions will be larger. This is clearly 
seen in the case of (1,2). The coincidence of the curves at the other 
ends, i.e., at $A = 0, is accidental because at this point $A + $B is just 
1/2. In general, the curves for the case with physical interactions do 
not coincide with those for no interactions, either at $ = 0 or  at 

A 

A $B = 0. 
The effect of xAB is different. When xAB is positive, its introduction 

induces the shift of equilibrium toward the polymer side as in Curves d. 
Because xAB$B = 0 at $B = 0, In $A at this point is not affected. A 
similar relation holds at $A = 0. Consequently, the values of $ at 
$ = 0 and $B at $A = 0 are the same as the equilibrium values without 
this monomer-monomer interaction (dotted lines). 

The discussions given above hold for the general case where r has 
any arbitrary value. We believe, that it is not necessary to give other, 
more complicated examples because the behaviors are essentially 
similar in nature. 

A 
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